
Distributed Collaboration among Agents

Agents need exclusive access to
a set of files

The Drinking Philosophers Problem

Key ideas of drinking philosophers algorithm

1. Conflict resolution in distributed systems.
2. Priority among agents in conflict. Some agents win and

others lose. Fair winning: every agent that wants to win
gets to win eventually.

3. Tokens. An agent that holds a token knows that other
agents don’t hold the same token.

4. Dynamic Data Structures: Priorities based on
timestamps and agent ids.

Client Life Cycle: Same as for mutex

Executing without
exclusive access
to shared files

Waiting for exclusive
access to a subset of

files

executing with
exclusive access
to a set of files.

Send requests
for files

Initial state

Duration could be
infinite

Duration is finite
Gets access to
files from OS

Duration determined
by OS

Client Life Cycle: Similar to Dining Philosophers

Does not hold any
beverage

Waiting for
beverages

Drinking
beverages

Sends requests
for beverages to

managers

Initial state

Tranquil Thirsty Drinking
Duration could be

infinite
Duration is finite

Gets beverages
from managers

Duration determined
by OS

Example:

Agents: Maya and Liu
Maya has priority 2
Liu has higher priority: 5

Resources: tea, milk, coffee

Agents may become thirsty for any (nonempty) set of resources.
e.g. Maya becomes thirsty for milk and tea;
after she gets milk and tea, she drinks it;
becomes tranquil;
becomes thirsty for coffee;
after she gets coffee she drinks it;
becomes tranquil;
becomes thirsty for tea and coffee….

Maya
thirsty

Liu
tranquil

Priority queue of
pending requests for tea

Priority queue of
pending requests for
coffee

milk manager

Request tea, priority = 2

Request milk, priority = 2

coffee manager

Maya
thirsty

Liu
tranquil

milk

Manager sends tea to Maya

Manager sends milk
to Maya

milk manager

coffee manager

tea manager

Maya
thirsty

Liu
thirsty

Request coffee, priority = 5

Request milk, priority = 5

Tea on its way to Maya

Maya has milk

milkmilk manager

coffee manager

tea manager

Maya
thirsty

Liu
thirsty

Tea on its way to Maya

Manager asks Maya
to return milk

Coffee on its way to Liu

milkmilk manager

coffee manager

tea manager

Manager gets Liu’s higher
priority request for milk

Maya
thirsty

Liu
thirsty

Request milk, priority = 5

Maya has tea

milk on its way to manager

LIU has coffee

milkmilk manager

coffee manager

tea manager

Maya
thirsty

Liu
thirsty

milk on its way to Liu

Maya has tea

LIU has coffee

milk manager

coffee manager

tea manager

Maya
thirsty

Liu
drinking

Maya has tea

LIU has coffee and milk

milk manager

coffee manager

tea manager

Maya
thirsty

Liu
tranquil

Maya has tea

milk manager

coffee manager

milk returned by Liu

coffee returned by Liu

tea manager

Maya
thirsty

Liu
tranquil

Maya has tea

milk manager

coffee manager

coffee manager has coffee

tea manager

milk on its way to Maya

Assume each agent has a unique id: a number
Give priority to the agent with the highest id.

Will that work?

Assume each agent has a unique id: a number
Give priority to the agent with the highest id.

Will that work?

No, because an agent with the highest id can win
conflicts forever, and lower id agents may remain
thirsty forever.

What to do?

Assume each agent has a unique id: a number
Give priority to the agent with the highest id.

Will that work?

No, because an agent with a high id can win conflicts
forever.

What to do?

Priorities for agents that lose the conflict must
increase with respect to the winner. How?

Assume each agent has a unique id: a number
Give priority to the agent with the highest id.

Will that work?

No, because an agent with a high id can win conflicts
forever.

What to do?

Priorities for agents that lose a conflict must increase
with respect to the winner. How?

Priority is (timestamp, agent_id) where timestamp is
the local clock time when the agent requests resource.

Proof of Correctness

Safety: A resource is held by at most one agent at a
time.

Proof: tokens are not created or destroyed or changed.

for each color X:
always(system has exactly one token of color X)

Proof that a request with timestamp T gets its resources
eventually.

Part 1: Eventually all agents’ clocks exceed T

Part 2: After all agents’ clocks exceed T the number of
pending requests with timestamps T or less decreases to 0.

Proof that a request with timestamp T gets its resources
eventually.

Part 1: A state is reached in which all agents’ clocks exceed
T.

Why?

Part 1: A state is reached in which all agents’ clocks exceed
T.

Why?

(Note: This is a proof about properties of clocks and is not
specific to the drinking philosophers problem.)

Because each agent’s clock ticks forward by at least 1
and agent clocks never go backwards.

For any T: local clock times of each agent i ticks forward by
at least 1 (from the specification of local clocks)

 For all i, all k: t[i] = k leads-to t[i] >= k+1

For any T: local clock times of each agent i ticks forward by
at least 1 (from the specification of local clocks)

 For all i, all k: t[i] = k leads-to t[i] >= k+1

Transitivity:
 For all i, all k: t[i] = k leads-to t[i] > T

For any T: local clock times of each agent i ticks forward by
at least 1 (from the specification of local clocks)

 For all i, all k: t[i] = k leads-to t[i] >= k+1

Transitivity:
 For all i, all k: t[i] = k leads-to t[i] > T

Disjunction:
 Eventually local clock times of each agent exceeds T
 For all i: true leads-to t[i] > T

Eventually local clock times of each agent exceeds T
 For all i: true leads-to t[i] > T

Clock times never decrease
 For all i: stable(t[i] > T)

Eventually a state is reached in which each agent’s clock
times exceeds T and remains in excess of T.
 For all i: true leads-to always(t[i] > T)

Eventually local clock times of each agent exceeds T
 For all i: true leads-to t[i] > T

Clock times never decrease
 For all i: stable(t[i] > T)

Eventually a state is reached in which each agent’s clock
times exceeds T and remains in excess of T.
 For all i: true leads-to always(t[i] > T)

Because (P leads-to always(Q)) AND (P leads-to always(Q’))
 IMPLIES
 (P leads-to always(Q AND Q’))

we get: true leads-to always(for all i: t[i] > T)

Part 2:
Let P be the predicate
 P: all clocks exceed T

Let M be number of requests with timestamp less than T.
M is a variant function.

Prove for all k > 0:
(P AND (M = k)) leads-to (P AND (M < k))

Proof: Pending request with lowest timestamp gets its
resources.

Using local clocks in distributed conflict resolution

Part 1
Given each agent’s local clock ticks forward prove that
 for all T: eventually all agent’s local clocks exceed T

Part 2
 All agent’s local clocks exceed T and
 k > 0 pending requests with timestamp T or less

 leads-to

 All agent’s local clocks exceed T and
 fewer than k pending requests with timestamp T or less

Using local clocks in distributed conflict resolution

Part 1: eventually all agent’s local clocks exceed T

 Same proof can be used in most problems.

Part 2
 Pending requests with timestamp T or less decreases

The proof varies from problem to problem.
The proof depends on how agents request resources.

Key ideas of drinking philosophers algorithm

1. Conflict resolution in distributed systems.
2. Priority among agents in conflict. Some agents win and

others lose. Fair winning: every agent that wants to win
gets to win eventually.

3. Tokens. An agent that holds a token knows that other
agents don’t hold the same token.

4. Dynamic Data Structures: Priorities based on
timestamps and agent ids.

Another algorithm for
distributed conflict resolution

Resources are ordered.

Assume that each resource (eg. file) has an integer id.

Each agent requests resource i only after it holds all
resources that it needs with id greater than i.

Example: Suppose an agent needs beverages 10, 7, 3 to transition
from tranquil to drinking (in drinking philosophers).

The agent first requests beverage 10. Only after it holds
beverage 10 does it request beverage 7. Only after it holds
beverages 10, 7 does it request beverage 3.

When it has all beverages it needs the agent drinks.

Example

Order of resources: tea > milk > coffee

Maya thirsty for tea and milk
Liu thirsty for milk and coffee

Queues are First-In-First-Out (FIFO), not priority queues.

Maya
thirsty

Liu
tranquil

milk manager

coffee manager

Maya requests tea tea manager

FIFO queue of pending
requests for coffee

FIFO queue of pending
requests for tea

Maya thirsty for tea and milk

Maya
thirsty

Liu
thirsty

milk manager

tea on its way to Maya

coffee manager

Liu requests milk

Maya thirsty for tea and milk

Maya thirsty for coffee and milk

Maya
thirsty

Liu
thirsty

milk manager

coffee manager

Maya has tea

Maya requests milk

milk on its way to Liu

Maya
thirsty

Liu
thirsty

milk manager

coffee manager

Liu has milk

Maya has tea

Maya in queue

Liu requests coffee

Maya
thirsty

Liu
drinking

milk manager

coffee manager

Liu has milk and coffee

Maya has tea

Maya in queue

Maya
thirsty

Liu
tranquil

milk manager

coffee manager

Liu returns milk

Maya has tea

Maya in queue

Liu returns coffee

Maya
thirsty

Liu
tranquil

milk manager

coffee manager

Maya has tea

milk on its way to Maya

Proof of Correctness

Safety: A resource is held by at most one agent.
(Straightforward)

Progress: By induction on resource id n

Induction hypothesis: All pending requests for a set R of
resources where the lowest resource id in R is n are
satisfied.

Base case: n = 0, were 0 is the lowest resource id.

Key ideas of conflict resolution in distributed systems.

1. Priority among agents in conflict. Some agents win and
others lose. Fair winning: every agent that wants to win
gets to win eventually.

2. Tokens. An agent that holds a token knows that other
agents don’t hold the same token.

3. Dynamic Data Structures: Priorities based on ordering of
resources, or timestamps, or dynamic partial-ordering
(acyclic graphs) of agents

