Distributed Dining Philosophers

CS172 K. Mani Chandy California Institute of Technology

Key ideas of distributed dining philosophers algorithm

- **1. Conflict resolution in distributed systems**.
- **2. Priority among agents in conflict**. Some agents win and others lose. Fair winning: every agent that wants to win gets to win *eventually*.
- **3. Tokens**. An agent that holds a token knows that other agents don't hold the same token.
- **4. Dynamic Data Structures**: Acyclic graph structures maintained by actions of all agents.

Client Life Cycle for Dining Philosopher

Safety property: Always neighbors aren't eating

Safety property satisfied: Neighbors aren't eating

Safety property violated Neighbors are eating

Another example of tokens: Introduction of forks

- There is exactly one fork on each edge.
- Forks on different edges have different colors: Color (u,v) is different from color (u,w).
- A fork on an edge (u, v) is at u or at v or in the channel from u to v or in the channel from v to u.
- Philosopher eats only if it holds all its forks.
- Safety property satisfied

Hungry agents give forks to requestors

Conflict resolution What to do when multiple agents want the same resource at the same time?

There have to be winners and losers.

Fair winning: Every agent that wants to win gets to win eventually.

Conflict resolution What to do when multiple agents want the same resource at the same time?

There have to be winners and losers.

If the state is symmetric, with all agents exactly like each other, then the state can remain symmetric for ever.

So, ensure that there is a priority structure which is asymmetric, e.g., there is an agent with highest priority. **Conflict resolution** What to do when u and v want fork(u,v) at the same time? **Priority:** Give the fork to the agent with higher priority.

- The vertices of a priority graph represent agents.
- The directed edges represent priority. There is an edge (u, v) exactly when agent u has priority over agent v.
- Maintain the invariant that the priority graph is acyclic. Why? Because a symmetric state can persist forever.

How should priorities change when a process eats?

v holds all its forks and eats

What should happen to edge directions after v eats?

- Flip edges incident on v?
- Make all edges directed towards v?

How should priorities change when a process eats?

v holds all its forks and eats

What should happen to edge directions after v eats?

- Flip edges incident on v? No. may cycle.
- Make all edges directed towards v? Yes. Prove that the graph remains acyclic.

How can we represent priorities in terms of forks? All forks held by an eating agent are dirty. An agent holding a dirty fork has lower priority.

Priority changes only when a clean fork becomes dirty

• An **eating** philosopher that gets a request for a fork does what?

• An eating philosopher that gets a request for a fork does what?

Finishes eating (in finite time) and gives the cleaned fork to requester

A **thinking** philosopher v that gets a request for a fork does what?

Always: Thinking philosophers hold only *dirty* forks.

If v is thinking then the fork that it shares with a neighbor is:

- **1.**at v *and dirty* or
- **2.**at w or in the channel to w.

A **thinking** philosopher v that gets a request for a fork does what?

Always: Thinking philosophers hold only *dirty* forks.

Cleans the dirty fork and gives it to the requester.

• A hungry philosopher that gets a request for a fork does what?

• A hungry philosopher that gets a request for a fork does what?

If the fork is clean then holds on to the request and the fork. (Does not give the fork because the holder has higher priority.)

If the fork is dirty then gives the cleaned fork to the requester. (Yields the fork because the requester has higher priority.)

• When hungry philosopher holds all its forks then what happens?

• When hungry philosopher holds all its forks then what happens?

If the hungry philosopher holds a request for a dirty fork it gives the dirty fork (after cleaning it) to the requester.

Otherwise, the hungry philosopher starts eating and dirties all the forks that it holds.

(So, the eating philosopher has lower priority than its neighbors.)

Philosopher yields a requested fork if: *the philosopher is not eating and the fork is dirty*

- An eating philosopher that gets a request for a fork sends the fork when it finishes eating. If it does not get a request for a fork then when it transits to thinking it continues to hold on to the (dirty) fork.
- A thinking philosopher that gets a request for a fork sends the fork.
- A hungry philosopher that gets a request for a fork sends the fork if the fork is dirty. It holds on to the fork if the fork is clean.
- A hungry philosopher transits to eating if it holds all forks and it does not have a request for a fork which is dirty.

Is the algorithm correct? Safety: obvious. Progress? Not clear

Can a philosopher remain hungry for ever?

Could a cabal of philosophers eat repeatedly and cause others to starve for ever? For example, could philosopher y remain hungry forever because u, v, w eat repeatedly, one after the other?

Could hungry philosophers forever hold some, but not all, forks that they need to eat?

To prove progress find a variant function f such that for all k:

(v.hungry and f = k) leads-to

 (v.eating or (v.hungry and f < k))

To prove progress find a variant function f such that for all k:

```
(v.hungry and f = k) leads-to 
(v.eating or (v.hungry and f < k))
```
One way to prove this is to show:

```
1. For all statements s:
```
 $\{v.$ hungry and f=k $\}$ s $\{v.$ eating or (v. hungry and f \leq k) $\}$

2. (v.hungry and $f=k$) leads-to NOT(v.hungry and $f=k$)

The pictorial idea of the progress proof

Variant Function f(s) is the directed acyclic subgraph of vertices with paths to v

Example Priority Graph.

Forks located at vertices; blue for clean; red for dirty.

Variant Function f(s) is the directed acyclic subgraph of vertices with paths to v

Example Priority Graph.

Forks located at vertices; blue for clean; red for dirty.

Variant function to prove that v will eat eventually is: (nT, nH), the number of thinking and hungry philosophers with paths to v.

nT = 1 because of vertex u $nH = 3$ because of vertices w, x, y

One way to prove this is to show:

```
1. For all statements s:
```
 $\{v.$ hungry and $f=k\}$ s $\{v.$ eating or (v. hungry and $f \le k\}$

How do we do this when $f = (nT, nH)$?

One way to prove this is to show:

```
1. For all statements s:
```
 $\{v.$ hungry and $f=k\}$ s $\{v.$ eating or (v. hungry and $f \le k\}$

```
How do we do this when f = (nT, nh)?
```
nT does not increase because no path to v is created while v remains hungry.

nH increases only if nT decreases.

One way to prove this is to show:

1. For all statements s:

 $\{v.$ hungry and f=k $\}$ s $\{v.$ eating or (v. hungry and f \leq k) $\}$

2. (v.hungry and $f=k$) leads-to NOT(v.hungry and $f=k$) How do we do this when $f = (nT, nH)$?

1. For all statements s:

 $\{v.$ hungry and $f=k\}$ s $\{v.$ eating or (v. hungry and $f \le k\}$ Show that (nT, nH) cannot increase while v remains hungry Any change to the priority graph does not increase nT, or nT + nH

Red: Dirty fork

The only change to the priority graph directs all edges incident on a vertex towards that vertex. So, if v remains hungry, then changes to the priority graph do not create paths from any vertex to v.

2. (v.hungry and f=k) leads-to NOT(v.hungry and f=k) How do we prove this when $f = (nT, nh)$?

Eventually highest priority hungry philosopher (e.g, y) gets all its forks, or

a higher priority thinking philosopher becomes hungry (see next slide).

In the left-hand diagram, W is the highest priority hungry philosopher.

A higher priority thinking philosopher (e.g. X) can become hungry (right-hand diagram). nT decreases, and nH increases, but (nT, nH) decreases.

(Note: X can get the fork from W before W eats in which case W eats only after X.)

Key ideas of distributed dining philosophers algorithm

- **1. Conflict resolution in distributed systems**.
- **2. Priority among agents in conflict**. Some agents win and others lose. Fair winning: every agent that wants to win gets to win *eventually*.
- **3. Tokens**. An agent that holds a token knows that other agents don't hold the same token.
- **4. Dynamic Data Structures**: Acyclic graph structures maintained by actions of all agents.