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Key ideas of distributed dining philosophers algorithm 

1. Conflict resolution in distributed systems.  
2. Priority among agents in conflict.  Some agents win and 

others lose. Fair winning: every agent that wants to win 
gets to win eventually. 

3. Tokens. An agent that holds a token knows that  other 
agents don’t hold the same token. 

4. Dynamic Data Structures: Acyclic graph structures 
maintained by actions of all agents.



Client Life Cycle for Dining Philosopher

executing outside  
critical section 

Waiting to enter  
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executing in 
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Safety property:  
Always neighbors aren’t eating

eating

not eating

Safety property satisfied: 
Neighbors aren’t eating

Safety property violated: 
Neighbors are eating



Another example of tokens: 
Introduction of forks

v

u

w

Fork(u,v) 
or  
Fork(v,u)

Fork(u,w) or 
Fork(w,u)

• There is exactly one fork on each 
edge. 

• Forks on different edges have 
different colors: Color (u,v) is 
different from color (u,w). 

• A fork on an edge (u, v) is at u or 
at v or in the channel from u to v 
or in the channel from v to u. 

• Philosopher eats only if it holds 
all its forks. 

• Safety property satisfied
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Agent

Fork

Hungry agents give forks to requestors

Agent j holds fork it shares  
with agent (j+1) mod 3

Agent j holds fork it shares  
with agent (j-1) mod 3



Conflict resolution What to do when multiple agents want 
the same resource at the same time? 

There have to be winners and losers. 

Fair winning: Every agent that wants to win gets to win 
eventually. 



Conflict resolution What to do when multiple agents want 
the same resource at the same time? 

There have to be winners and losers. 

If the state is symmetric, with all agents exactly like each 
other, then the state can remain symmetric for ever. 

So, ensure that there is a priority structure which is 
asymmetric, e.g., there is an agent with highest priority. 



Conflict resolution What to do when u and v want fork(u,v) 
at the same time?  
Priority: Give the fork to the agent with higher priority.

• The vertices of a priority graph represent agents.  
• The directed edges represent priority. There is an edge (u, v) 

exactly when agent u has priority over agent v. 
• Maintain the invariant that the priority graph is acyclic. Why? 

Because a symmetric state can persist forever.

u

v w

u

v w



How should priorities change when a process 
eats?

u

v w

yx

v holds all its forks and eats

What should happen to edge directions after v 
eats? 
• Flip edges incident on v? 
• Make all edges directed towards v?



How should priorities change when a process 
eats?

u

v w

yx

v holds all its forks and eats

What should happen to edge directions after v 
eats? 
• Flip edges incident on v? No. may cycle. 
• Make all edges directed towards v? Yes. 

Prove that the graph remains acyclic.

u

v w

yx



How can we represent priorities in terms of forks? 
All forks held by an eating agent are dirty.  

An agent holding a dirty fork has lower priority.

clean

u v u v

dirty

u v

clean

u v

clean

u eats

fork in channel 
to vClean fork 

received by v

priority

Priority changes only when a clean fork becomes dirty



Proposal for an algorithm  
• An eating philosopher that gets a request for a fork 
does what? 



Proposal for an algorithm  
• An eating philosopher that gets a request for a fork 
does what? 

Finishes eating (in finite time) and gives the cleaned 
fork to requester 



Proposal for an algorithm  

A thinking philosopher v that gets a request for a fork 
does what? 

Always: Thinking philosophers hold only dirty forks. 

If v is thinking then the fork that it shares with a 
neighbor is: 
1.at v and dirty or 
2.at w or in the channel to w. 



Proposal for an algorithm  

A thinking philosopher v that gets a request for a fork 
does what? 

Always: Thinking philosophers hold only dirty forks. 

Cleans the dirty fork and gives it to the requester.



Proposal for an algorithm  
• A hungry philosopher that gets a request for a fork 
does what? 



Proposal for an algorithm  
• A hungry philosopher that gets a request for a fork 
does what? 

If the fork is clean then holds on to the request and 
the fork. (Does not give the fork because the holder 
has higher priority.) 

If the fork is dirty then gives the cleaned fork to the 
requester. (Yields the fork because the requester has 
higher priority.) 



Proposal for an algorithm  
• When hungry philosopher holds all its forks then 

what happens? 



Proposal for an algorithm  
• When hungry philosopher holds all its forks then 

what happens? 

If the hungry philosopher holds a request for a dirty 
fork it gives the dirty fork (after cleaning it) to the 
requester. 

Otherwise, the hungry philosopher starts eating and 
dirties all the forks that it holds. 
(So, the eating philosopher has lower priority than its 
neighbors.) 



Proposal for an algorithm  

Philosopher yields a requested fork if: 
the philosopher is not eating and the fork is dirty 



Proposal for an algorithm 

  
• An eating philosopher that gets a request for a fork sends the 

fork when it finishes eating. If it does not get a request for a 
fork then when it transits to thinking it continues to hold on to 
the (dirty) fork. 

• A thinking philosopher that gets a request for a fork sends the 
fork. 

• A hungry philosopher that gets a request for a fork sends the 
fork if the fork is dirty. It holds on to the fork if the fork is 
clean. 

• A hungry philosopher transits to eating if it holds all forks and it 
does not have a request for a fork which is dirty. 

Is the algorithm correct? Safety: obvious. Progress? Not clear 



Can a philosopher remain hungry for ever?

u

v w

yx

Could a cabal of philosophers eat 
repeatedly and cause others to 
starve for ever? For example, could 
philosopher y remain hungry forever 
because u, v, w eat repeatedly, one 
after the other? 

Could hungry philosophers forever 
hold some, but not all, forks that 
they need to eat?



To prove progress find a variant function f such that for all 
k: 
(v.hungry and f = k)     leads-to  
       (v.eating or (v.hungry and f < k)) 



To prove progress find a variant function f such that for all 
k: 
(v.hungry and f = k)     leads-to  
       (v.eating or (v.hungry and f < k)) 

One way to prove this is to show: 
1. For all statements s: 
{v.hungry and f=k} s {v.eating or (v.hungry and f <= k)} 

2. (v.hungry and f=k)  leads-to NOT(v.hungry and f=k) 



f(s) = 9

f(s) = 8

f(s) = 7

f(s) = 6

f(s) = 5

f(s) = 4

f(s) = 3

f(s) = 10

f(s) = 11

Goal state

f is the variant function lower bound

The pictorial idea of the progress proof

state
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y w

vx
H

H H: Hungry

T: Thinking

H: Hungry

Dirty fork: red

Clean fork: blue

Dirty fork

Variant Function 
f(s) is the directed acyclic 
subgraph of vertices with 
paths to v

Example Priority Graph.  
Forks located at vertices; blue for clean; red for dirty.



u

y w

vx
H

H H: Hungry

T: Thinking

H: Hungry

Dirty fork: red

Clean fork: blue

Dirty fork

Variant Function 
f(s) is the directed acyclic 
subgraph of vertices with 
paths to v

Example Priority Graph.  
Forks located at vertices; blue for clean; red for dirty. 

Variant function to prove that v will eat eventually is: (nT, nH), the 
number of thinking and hungry philosophers with paths to v. 

nT = 1 because of vertex u 
nH = 3 because of vertices w, x, y
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nT, nH = 1, 3 nT, nH = 1, 2

nT, nH = 1, 1nT, nH = 0, 0



One way to prove this is to show: 
1. For all statements s: 
{v.hungry and f=k} s {v.eating or (v.hungry and f <= k)} 

How do we do this when f = (nT, nH)? 



One way to prove this is to show: 
1. For all statements s: 
{v.hungry and f=k} s {v.eating or (v.hungry and f <= k)} 

How do we do this when f = (nT, nH)? 

nT does not increase because no path to v is created while 
v remains hungry. 

nH increases only if nT decreases. 



One way to prove this is to show: 
1. For all statements s: 
{v.hungry and f=k} s {v.eating or (v.hungry and f <= k)} 

2. (v.hungry and f=k)  leads-to NOT(v.hungry and f=k) 
How do we do this when f = (nT, nH)?



1. For all statements s: 

{v.hungry and f=k} s {v.eating or (v.hungry and f <= k)} 

Show that (nT, nH) cannot increase while v remains hungry 
Any change to the priority graph does not increase nT, or nT + nH

W W

Blue: Clean fork

Red: Dirty fork

The only change to the priority graph directs all edges incident on a 
vertex towards that vertex. So, if v remains hungry, then changes 

to the priority graph do not create paths from any vertex to v.



2. (v.hungry and f=k)  leads-to NOT(v.hungry and f=k) 
How do we prove this when f = (nT, nH)? 

Eventually highest priority hungry philosopher (e.g, y) gets all 
its forks, or  
a higher priority thinking philosopher becomes hungry (see 
next slide).
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H H: Hungry

T: Thinking

H: Hungry

Dirty fork: red

Clean fork: blue

Dirty fork



V

W

X

Hungry

A highest priority  
hungry philosopher

Thinking

Blue: clean fork

Red: dirty fork

In the left-hand diagram, W is the highest priority hungry philosopher. 

A higher priority thinking philosopher (e.g. X) can become hungry (right-hand 
diagram). nT decreases, and nH increases, but (nT, nH) decreases. 

(Note: X can get the fork from W before W eats in which case W eats only after X.)

V

W

X
Hungry



Key ideas of distributed dining philosophers algorithm 

1. Conflict resolution in distributed systems.  
2. Priority among agents in conflict.  Some agents win and 

others lose. Fair winning: every agent that wants to win 
gets to win eventually. 

3. Tokens. An agent that holds a token knows that  other 
agents don’t hold the same token. 

4. Dynamic Data Structures: Acyclic graph structures 
maintained by actions of all agents.


